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* Active experiments in wave-particle interactions using electron
beams date back to the 1980s but went through a prolonged period

of inactivity

e Van Allen Probes and other missions have vastly increased our
understanding of wave particle interactions and their importance

 Jechnologies for beam generation, wave receivers, and particle
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Shuttle and rocket experiments confirmed:

e waves are stimulated by coherent Cherenkov emission

e Observed waves are consistent with whistler mode

* spatial coherence and harmonic structure showed the beam




I'hey could not:

* vary the energy of the beam

* measure waveforms for wave normal angle, ellipticity, planarity, etc.

* resolve spectral width of the emissions (|

mportant for pitch angle
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Beam PlE Basics

e Joint LANL and GSFC collaboration

 We use a pulsed electron beam to generate waves using various frequencies,
duty cycles, and energies

* A second payload measures waves, particles, and background plasma
parameters (B, density, temperature




Beam PIE Components

* Accelerator Payload: no measurements, spacecraft charging mitigated
by maximizing surface area (e.g. nosecone

 Wave Receiver Payload: full E and B waveform capture at VLF
frequencies, 1D E component at HF frequencies

+ Effect of Waves on Particles: two detectors to ook for electron pitch




Recelver Payload
Antennas Deployed

Accelerator with Nosecone
attached to minimize charging
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e Accelerator and recelver
aligned along B

e Gradually separate
 We are not trying to

measure the beam with the
recelver



The beam pulsing scheme lets us

® vary enerqy, frequency, and duty cycle independently

e compare wave & particle measurements when the beam is on
with background measurements when the beam is off

Nominal Operations: 1/2 sec on, 1/2 sec off
For the duration of the experiment

"On"
Generating
Waves "Off"

, VLF Beam Pulsing
variable energy, frequency, duty cycle

N

Pulse Duration | |
(or 'width') Modulation Period




Fach Y2 second (energy, frequency, duty cycle) sequence

will be repeated at different separations
and background plasma conditions
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RF Cavity

Energy Filter



GSFC/Pfaff, Farrell

-- E-field booms
Dual-hinge fiberglass
Fold-out axial boom
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* At 300-500 km most

ambient electrons (10s keV
MIrror above the recelver

P ,int

 We look for scattering by
comparing the flux of
particles mirroring

locally (90°) and below the
recelver (/70°




GSFC/Samara

-- APES electron
detector

-- HF Analog
Experiment

APES 90°
Locally-Mirroring
Electrons

APES 70°
Electrons Mirroring
at ~ 100 km

Two units mounted
side by side




Parameters that determine wave
characteristics

Period in Frequency
Pulse width in microseconds microseconds In Hertz

e Beam Energy

e Beam Frequency

 Beam Duty Cycle

 Ambient Plasma conditions (B, density, temperature)

Can repeat all of these every 12 seconds = 25 complete repeated sequences



* Prediction of Wave Characteristics as a function of beam pulsing
parameters.

* One new tool is Spectral Plasma Solver (SPS) methods.
Delzanno et al., 2015




SPS simulations show both
X-mode and Whistler-mode
waves will be generatead

Different pulsing schemes
will determine Whistler & X
mode spectra

Whistler mode waves have
a broad wave cone

X mode waves may only be
detected at small cross-field
separations
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100 pulses, a=1 , E=14 keV, DC=5%, t ,=1000 ns 100 pulses, a=1 , E=14 keV, DC=5%, t ,=2000 ns
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ONCIlUSIONS

* |f everything works the results should be really cool

 The methodology allows very sensitive and quantitative tests for
quasi-linear theory - both for wave generation by particles and
particle scattering by waves

* We can and will measure waves




